Operator Figà-Talamanca–Herz algebras

نویسنده

  • Volker Runde
چکیده

Let G be a locally compact group. We use the canonical operator space structure on the spaces L(G) for p ∈ [1,∞] introduced by G. Pisier to define operator space analoguesOAp(G) of the classical Figà-Talamanca–Herz algebrasAp(G). If p ∈ (1,∞) is arbitrary, then Ap(G) ⊂ OAp(G) such that the inclusion is a contraction; if p = 2, then OA2(G) ∼= A(G) as Banach spaces spaces, but not necessarily as operator spaces. We show that OAp(G) is a completely contractive Banach algebra for each p ∈ (1,∞), and that OAq(G) ⊂ OAp(G) completely contractively for amenable G if 1 < p ≤ q ≤ 2 or 2 ≤ q ≤ p < ∞. Finally, we characterize the amenability of G through the existence of a bounded approximate identity in OAp(G) for one (or equivalently for all) p ∈ (1,∞).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive Cone in $p$-Operator Projective Tensor Product of Fig`a-Talamanca-Herz Algebras

In this paper we define an order structure on the $p$-operator projective tensor product of Herz algebras and we show that the canonical isometric isomorphism between $A_p(Gtimes H)$ and $A_p(G)widehat{otimes}^p A_p(H)$ is an order isomorphism for amenable groups $G$ and $H$.

متن کامل

p-Operator Spaces and Figà-Talamanca-Herz Algebras

We study a generalisation of operator spaces modelled on Lp spaces, instead of Hilbert spaces, using the notion of p-complete boundedness, as studied by Pisier and Le Merdy. We show that the Figà-Talamanca-Herz Algebras Ap(G) becomes quantised Banach algebras in this framework, and that the cohomological notion of amenability of these algebras corresponds to amenability of the locally compact g...

متن کامل

Fourier and Figà-Talamanca–Herz algebras on amenable, locally compact groups

For a locally compact group G, let A(G) denote its Fourier algebra and, for p ∈ (1,∞), let Ap(G) be the corresponding Figà-Talamanca–Herz algebra. For amenable G and p, p ∈ (1,∞) such that 1 p + 1 p , we show that Ap(G) ∩Ap′(G) = A(G).

متن کامل

Operator space structure and amenability for Figà-Talamanca–Herz algebras

Column and row operator spaces — which we denote by COL and ROW, respectively — over arbitrary Banach spaces were introduced by the first-named author; for Hilbert spaces, these definitions coincide with the usual ones. Given a locally compact group G and p, p ∈ (1,∞) with 1 p + 1 p = 1, we use the operator space structure on CB(COL(L ′ (G))) to equip the Figà-Talamanca–Herz algebra Ap(G) with ...

متن کامل

Cohen–Host type idempotent theorems for representations on Banach spaces and applications to Figà-Talamanca–Herz algebras

Let G be a locally compact group, and let R(G) denote the ring of subsets of G generated by the left cosets of open subsets of G. The Cohen–Host idempotent theorem asserts that a set lies in R(G) if and only if its indicator function is a coefficient function of a unitary representation of G on some Hilbert space. We prove related results for representations of G on certain Banach spaces. We ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001